Sharp Large Deviations for Gaussian Quadratic Forms with Applications

نویسندگان

  • Bernard Bercu
  • Fabrice Gamboa
  • Marc Lavielle
  • M. LAVIELLE
چکیده

Under regularity assumptions, we establish a sharp large deviation principle for Hermitian quadratic forms of stationary Gaussian processes. Our result is similar to the well-known Bahadur-Rao theorem [2] on the sample mean. We also provide several examples of application such as the sharp large deviation properties of the Neyman-Pearson likelihood ratio test, of the sum of squares, of the Yule-Walker estimator of the parameter of a stable autoregressive Gaussian process, and finally of the empirical spectral repartition function. Résumé. Sous des hypothèses de régularité convenables, on établit un principe de grandes déviations précises pour des formes quadratiques de processus gaussiens stationnaires. Notre résultat est l’analogue du théorème de Bahadur-Rao [2] sur la moyenne empirique. Nous proposons également plusieurs exemples d’application comme les propriétés de grandes déviations précises pour le test du rapport de vraisemblance de Neyman-Pearson, pour la somme des carrés, pour l’estimateur de Yule-Walker du paramètre d’un processus gaussien autorégressif stable, et finalement pour la fonction de répartition spectrale empirique. AMS Subject Classification. 60F10, 11E25, 60G15, 47B35. Received January 30, 1998. Revised December 21, 1998 and November 3, 1999.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of quadratic D-forms to generalized quadratic forms

In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.

متن کامل

Large deviations for Gaussian stationary processes and semi-classical analysis

In this paper, we obtain a large deviation principle for quadratic forms of Gaussian stationary processes. It is established by the conjunction of a result of Roch and Silbermann on the spectrum of products of Toeplitz matrices together with the analysis of large deviations carried out by Gamboa, Rouault and the first author. An alternative proof of the needed result on Toeplitz matrices, based...

متن کامل

Sharp Large Deviation for the Energy of α-Brownian Bridge

where W is a standard Brownian motion, t ∈ [0, T), T ∈ (0,∞), and the constant α > 1/2. Let P α denote the probability distribution of the solution {X t , t ∈ [0, T)} of (1). The α-Brownian bridge is first used to study the arbitrage profit associatedwith a given future contract in the absence of transaction costs by Brennan and Schwartz [1]. α-Brownian bridge is a time inhomogeneous diffusion ...

متن کامل

Multi-point Gaussian states, quadratic-exponential cost functionals, and large deviations estimates for linear quantum stochastic systems

This paper is concerned with risk-sensitive performance analysis for linear quantum stochastic systems interacting with external bosonic fields. We consider a cost functional in the form of the exponential moment of the integral of a quadratic polynomial of the system variables over a bounded time interval. An integro-differential equation is obtained for the time evolution of this quadratic-ex...

متن کامل

Adaptive Control in the Presence of Sensor Measure Outliers

Adaptive control of plants whose sensor measurements are corrupted by outliers is considered. Outliers are large deviations of the signal being measured, only occurring in a few percent of the observations. For adaptive controllers relying on an implicit Gaussian assumption, both the identification and the underlying control law are yielded by the minimization of quadratic losses. Therefore, al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000